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screw component. By using the method for determin- 
ing the Burgers vector proposed by Tanaka, Terauchi 
& Kaneyama (1988), the Burgers vector is determined 
to be ½[011] or ½[011]. 

References 

CARPENTER, R. W. & SPENCE, J. C. H. (1982). Acta Cryst. A38, 
55-61. 

CHERNS, D., KIELY, C. J. & PRESTON, A. R. (1988). Uhramicros- 
copy, 24, 355-369. 

CHERNS, D. & PRESTON, A. R. (1986). Proc. Xlth Int. Congr. on 
Electron Microscopy, Kyoto, Japan, pp. 721-722. 

HIRSCH, P., HOWIE, A., NICHOLSON, R. B., PASHLEY, D. W. & 
WHELAN, M. J. (1977). Electron Microscopy of Thin Crystals, 
pp. 164, 178,198,250. Huntington, New York: Robert E. Krieger. 

JIAO, S., Zou, H. & WANG, R. (1987). J. Chin. Electron Microsc. 
Soc. 6, 42-47. (In Chinese.) 

Lu, G., WEN, J. G., ZHANG, W. & WANG, R. (1990). Acta Cryst. 
A46, 103-112. 

TANAKA, M., TERAUCHI, M. & KANEYAMA, T. (1988). Conver- 
gent-Beam Electron Diffraction II, pp. 160-185. Tokyo: JEOL- 
Maruzen. 

WEN, J., WANG, R. & LU, G. (1989). Acta Cryst. A45, 422-427. 

Acta Cryst. (1991). A47, 39-44 

Effects of Crystal-Surface Inclination on X-ray Multiple Diffraction: Intensity Variation 
and Phase Determination 

BY KUANG-CHIH LEE AND SHIH-LIN CHANG 

Department  o f  Physics, Nat ional  Tsing Hua University, Hsinchu, Taiwan 30043 

(Received 21 July 1989; accepted 3 September 1990) 

Abstract 

Effects of crystal-surface inclination on the intensities 
of X-ray Umweganregung multiple diffractions are 
investigated for perfect silicon crystals. The intensity 
variations of the multiply diffracted beams due to the 
surface inclination are accounted for in terms of 
three-beam dynamical calculations. Quantitative 
phase determination direct from the intensity profile 
analysis is also carded out. It is found that the phase 
determination is not affected by the crystal-surface 
inclination. This conclusion is also supported by the 
analysis of the profile asymmetry. 

1. Introduction 

X-ray multiple diffraction takes place when several 
sets of atomic planes are simultaneously brought into 
position to diffract an incident X-ray beam. The 
coherent dynamical interaction among the multiply 
diffracted waves, which governs the diffraction 
intensities, has long been investigated for Borrmann 
(transmission) geometry (Borrmann & Hartwig, 1965; 
Saccocio & Zajac, 1965; Hildebrandt, 1967; Joko & 
Fukuhara, 1967; Ewald & Heno, 1968; Uebach & 
Hildebrandt, 1969; Balter, Feldman & Post, 1971; 
Umeno & Hildebrandt, 1975; Post, Chang & Huang, 
1977; Hcfier & Aanestad, 1981; Campos & Chang, 
1986; and many others), and for Renninger (reflec- 
tion) geometry (Renninger, 1937; Colella, 1974; 
Chapman, Yoder & Colella, 1981; Chang, 1981, 1982; 
Juretschke, 1982a, b; Hiimmer & Billy, 1982, 1986; 
Post, 1983; Post, Nicolosi & Ladell, 1984; Shen, 1986; 
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Thorkildsen, 1987; Chang & Tang, 1988; and many 
others). Besides, the extraction of phase information 
from the intensity distribution of multiple diffractions 
has recently become one of the major themes in this 
particular area of research. Reports on this subject 
include articles by Hart & Lang (1961), Ewald & 
Heno (1968), Colella (1974), Post (1977), Jagodzinski 
(1980), Chapman, Yoder & Colella (1981), Chang 
(1981, 1982), Hoier & Aanestad (1981), Juretschke 
(1982a), Hiimmer & Billy (1982), Post (1983), Post, 
Nicolosi & Ladell (1984), Shen (1986) and Mo, 
Haubach & Thorkildsen (1988) for centrosymmetric 
crystals, and by Juretschke (1982b), Chang & 
Valladares (1985), Hfimmer & Billy (1986), Shen 
& Colella (1988), Tang & Chang (1988) and 
Hiimmer, Weckert & Bondza (1989) for noncentro- 
symmetric crystals. 

Very recently, a quantitative phase-determination 
procedure using three-beam diffraction-intensity 
profiles has been proposed (Chang & Tang, 1988). 
Experimental phase determination has also been re- 
alized for perfect-crystal plates (Tang & Chang, 1988). 
In that approach, the intensity due to dynamical 
interaction, which may be separated from the total 
intensity distribution, is directly related to the phases 
of the involved structure-factor multiplets. As far as 
the dynamical effect in multibeam diffraction is con- 
cerned, the excitation of the dispersion surface 
governed by the crystal boundary plays a key role in 
the allocation of the total energy into the diffracted 
waves. Namely, the diffraction intensities depend also 
on the crystal boundary. Recently, Kov'ev & Deigen 
(1987) have reported the intensity variation over 
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40 EFFECTS OF CRYSTAL-SURFACE I N C L I N A T I O N  

angular deviations in the Bragg angle of a relatively 
strong Aufhellung (Renninger, 1937) three-beam 
diffraction in an asymmetrically cut crystal. It is, 
however, the purpose of this article to investigate 
systematically the effects of inclined crystal surfaces 
on the intensities of Umweganregung (Renninger, 
1937) multiple diffractions in a 360 ° azimuthal rota- 
tion around a given reciprocal-lattice vector. The 
connection between the crystal boundary and the 
accuracy of the quantitative phase determination is 
also investigated and discussed. 

We concentrate on the cases involving three-beam 
Umweganregung (Renninger, 1937) diffractions from 
the (centrosymmetric) crystals of silicon. The clear 
asymmetric intensity profiles, due to the triplet phases 
of 0 and 180 °, facilitate the investigation. 

2. Experimental 

The experimental arrangement reported by Tang & 
Chang (1988) was adopted. A Cu target and a filament 
of 3000x300 ~m were used. The focal size of the 
incident beam was about 300 x 300 lxm. The angular 
beam divergence was 0.033 ° in both vertical and 
horizontal directions. The beam size at the crystal 
was about 1.73 mm in diameter. 

Several [ 111 ]-cut plate-like perfect silicon crystals 
with the surface inclination angles of 0, 10 and 20 ° 
with respect to the (111) planes were prepared. The 
crystal surfaces were polished with 0.3 I~m A1203 
powder and then etched with CP-4A solution 
[HF(1) : HNO3(4) :CH3COOH(2)].  The direction of 
inclination is along [170]. The areas of the crystal 
surfaces irradiated by the incident X-rays were always 
smaller than the total crystal surfaces. 

The experiment is performed by setting the crystal 
for 222 reflection, the primary reflection G, and then 
rotating the crystal around the reciprocal-lattice vec- 
tor g of the 222 reflection to bring additional sets of 
atomic planes (of the secondary reflection L) in a 
position to satisfy Bragg's law. Thus, multiple diffrac- 
tion takes place. The interaction among the diffracted 
waves gives rise to the intensity variation on the 
background of the 222 reflection. A scintillation 
counter is used to monitor this intensity variation for 
the 222 reflection. 

The geometric relation among the crystal surface 
normal, indicated as the downward unit vector fie, 
and the directions of the diffracted beams, repre- 
sented by the wavevectors ko, ko and kL in vacuum, 
is depicted in Fig. 1. La is the Laue point, the center 
of the Ewald sphere, such that/Co = kG = kL = k = 1/h. 
A is the wavelength of the X-rays used. OG (=g)  and 
OL (=1) are the reciprocal-lattice vectors of the G 
and L reflections. Here, instead of rotating the crystal, 
we rotate the X-ray beam around the crystal. Hence, 
the La point is rotated around g, while the crystal is 
fixed. The x, y and z axes are chosen to be along the 

[1[0], [112] and [111] directions. 0o and 0L are the 
polar angles and eo and eL are the azimuthal angles 
of -ko and !, respectively, fie is in the X Z  plane. The 
angle e ,  between g and fie is 180 ° -  a. Because of the 
relative rotation of the point La with respect to the 
crystal, eo = - e .  

In terms of a spherical coordinate system, the vec- 
tors fie, g, !, ko, ko and kL are expressed as 

~e ~--- (--sin a, O, - cos  o~ ) ( 1 ) 

g=g(O,O, 1) (2) 

! = / (s in  OL COS eL, sin OL sin eL, COS 0I_) (3) 

ko = k ( - s in  Oo cos Co, - s in  Oo sin Co, - cos  0o) (4) 

ko = k ( - s i n  O~ cos Co, - s in  Oo sin Co, cos 0o) (5) 

k t  = (1 sin 0,~ cos e L -  k sin Oo sin Co, 

I sin OL sin eL - k sin Oo sin Co, 

I cos 0 L - -  k cos 0o). (6) 

At the exact three-beam diffraction peak position, 
eo =ep  and kL = k. From (6) and the relation 0o = 
90 ° -  0B (0B is the Bragg angle of the G reflection), 
we obtain (Cole, Chambers & Dunn, 1962) 

where 

ep = eL-F # (7) 

r l l2k  - c o s  0 L sin OB] 
/3 = arccos L s-qn 0-~ cos O B " (8) 

The two ep's given in (7) are the two positions, the 
IN and OUT positions, at which the Ewald sphere 
touches the point L. The IN position corresponds to 
the situation where the relative motion brings the 
point L towards the lSwald sphere, and the OUT 
position to that for the point L leaving the Ewald 
sphere. 

To reveal the crystal-boundary effect on the 
intensities of multiple diffractions, slow step scans 

Z[111] 
L 

G / I 

G ///z/ 

eo/, k~o)" \ _/__-~ 
, . . . . . .  . . . .  

/ ..... - . . . .  -- 

X [11"0] ~D 0 

Y[11~] 

Fig. 1. Geometry of a three-beam (0, G, L)diffraction in reciprocal 
space. 
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(~o scans around [222]) are carried out for the follow- 
ing well resolved strong three-beam diffractions: 
{113/11i}, {11i/113}, {133/1ii}, {lii/133} and 
{i33/3 i i}  for Cu Ka~ and Cu Kfl. The indices before 
and after the slashes indicate the secondary reflection 
L and the coupling G - L reflection, respectively. The 
bracket { } stands for the family of all the permuted 
hkl reflections. The step width of the scans is 0.01 °. 
The counting time is so chosen that the error in the 
counting statistics is less than 1%. The relative 
intensity ratios, l b  = ( / 3 - I 2 ) / I 2 ,  are plotted against 
the azimuthal ~0 angles, where 12 is the two-beam 
intensity of 222 and /3  the three-beam intensity. Figs. 
2 ( a ) - (d )  are such plots for Si {113/1 IT} with a = 0, 10 
and 20 ° for Cu Kal  radiation. ~o = 0 corresponds to 
the angular position at which the [110] direction is 
coincident with the plane of incidence of the 222 
reflection. The diffractions at the IN positions are 
marked by stars. In Fig. 2(a),  some of the diffraction 
profiles are shown for illustration. The well defined 
intensity asymmetries near the profile tails are clearly 
observed. Fig. 2(b) shows the peak intensities of all 
the {113/111} three-beam diffractions. The tails of the 

profiles are not shown to save space. The peak 
intensities of these three-beam cases are almost the 
same for t~ = 0  °. Only the 113 and 111 cases have 
slightly higher peak intensities than the others. This 
is probably due to the inhomogeneity of the incident 
beam. 

Figs. 2(c) and (d) are the three-beam diffraction 
profiles displayed over the 360 ° azimuth for a = 10 
and 20 ° , respectively. The decrease of peak intensity 
asymmetry near the profile tails is still clearly seen. 
Similar behavior for the diffraction profiles of 
{113/11i} for Cu K/3 (which are not shown here) is 
also observed. 

The intensity profiles of the three-beam diffraction 
{133/111} for Cu Kfl are shown in Figs. 3(a)  and (b) 
for a = 10 and 20 °. Those profiles for a = 0 °, having 
uniform peak intensities, are not shown. The intensity 
asymmetry, although not as pronounced as in Fig. 2, 
remains observable. The intensity decrease takes 
place every 60 ° in azimuth. As a increases, the effect 
becomes more pronounced. All these features are 
qualitatively reproduced by calculations given in 
Fig. 4. 
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Fig. 2. Slow scans of { 113/11 i} and { 11 i/113} three-beam diffrac- 
tions for Cu Ka I (the full widths at half maxima are about 
0.05°): (a) intensity profiles for a = 0°; (b) peak intensities for 
a = 0°; (c) intensity profiles for a = 10°; (d) intensity profiles 
for a = 20 °. 

3. Data analysis and phase determination 

As stated in the Introduction, the three-beam diffrac- 
tion intensity is dependent on the crystal boundary 
and the involved triplet invariant phase. In the follow- 
ing, we first calculate the diffraction intensities for 
the varying crystal boundary as ~o changes, assuming 
that the triplet phase 83 is the phase calculated from 
the known crystal structure. We then carry out a 
quantitative determination of phases using the 
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Fig. 3. Slow scans of {133/111} and {1ii/133} three-beam diffrac- 
tion forCuK~: (a) a=10°and (b) a=20 °. 
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intensity profiles and examine how the crystal boun- 
dary affects the determined phase values. 

( a ) Intensity calculations 

To explain the intensity variation observed, due to 
the crystal boundary effect, the dynamical theory of 
X-ray diffraction for three-beam cases is employed. 

The fundamental equation of wavefield for a three- 
beam (0, G, L) diffraction can be written as (see, for 
example, Chang, 1984) 

/ 20~ o 0 P~,Xo 0 
2seo 0 P,~Xo 

%X o 0 2~:o 0 

P~Xo 0 2~: o 

2~L dlXL d2XL-G d~IXL-G 
d3x L 0 d~XL_ G 

, , , , ,  0 

o l i d . q =  

o I W I  
o 2~L I\E,._I 

[0], 

(9) 

where the resonance failures 2sru's are defimed as 

2~u = X o - (  K ~ -  k2)/ k ~ (10) 

for H = 0, G and L. E~u and E,m are the o- and 7r 
components of the wavefield amplitudes of the H 
reflection, p's and d's are the polarization factors 
defined as follows: 

P~ = &o. O0 = 1 
A A 

p,~ = "no."no = cos 2 0B 
A ^ 

d l =  "no.trz = -s in  ~ sin (0~ - t) 

d~ = O o . ~ ,  = ~ r ~ . ~  = c o s  

d3 = ~ro. ~ L = cos ( Os - t) 

d~ = ~rG.~rL = sin ~/, sin (0e+ t) 

d~ = ,~6 .'nL = COS (0~ + t) 
A A A ^ A A A A 

0 " 0 "  ~ 0  ~ O ' o ' " n L  = " n O "  O ' G  = O ' G  " " n L  ~ O ,  

(11) 

where ~r's and '~'s are the unit vectors of the corre- 
sponding or and 7r polarization. Referring to Fig. 1, 
t$o and ~ are perpendicular to the 0GLa plane and 
a$o and '~G lie in the plane 0GLa. ~L is chosen to be 
normal to 6o and OG and parallel to the 0GLa plane. 
All the O's are perpendicular to the corresponding 
K's. t is the angle between the wavevector Ko and the 
projected KL onto the 0GLa plane. 0 is defined, 
according to Fig. 1, as 

= ~L -- ~Oo. 

Xo is equal to FFo, where F = - r , h = / T r V  and Fo is 
the modulus of the structure factor of the 0 reflection. 
re is the classical radius of the electron and V the 
volume of the crystal unit cell. Equation (9) involves 
the invariant phase (~3 of the structure-factor triplet 
FoFLFG-L. 

By considering small angular deviations, A~o in 
azimuth and A0 in 0~, and the accommodation k~ 
along fie, the wavevector KH inside the crystal can 
be expressed as 

K .  - kf~u - J~'~e + ( A 0 ) [  (f('G X ko) x f(o] 
+ ( A ~ o ) $ x ~  (12) 

for H = 0, G and L. Neglecting the second-order 
terms in ~', A0 and A¢, the corresponding 2~:H's are 

where 

2~H=Xo+2~y.+(AO)a.+(Ae)bn, (13) 

a .  = - 2 f ~ . .  [(~,G x f%) x ~ ]  (14) 

bu = -2~ , . . [~ ,  x ~ ] ,  (15) 

Yn is the direction cosine of Kn with respect to fie. 
As usual, (9) can be solved as an eigenvalue prob- 

lem. The secular equation describes the dispersion 
surface. The eigenvectors give the ratios among the 
E's. The absolute values of the wavefield amplitudes 
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Fig. 4. Calculated relative intensity ratios. I ~ = 
(I3-I2)/I  2 for {113/111} and {111/113} 
three-beam diffractions for Cu Ka~ with (a)  
a = 1 0  ° and (b) a = 2 0 ° ;  and the I ~  for 
{133/111} and {111/133} three-beam diffrac- 
tions for Cu K/3 with (c) a = 10 ° and (d)  
a = 20 °. 
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can be determined from the boundary conditions. 
Intensities can then be calculated accordingly. This 
calculation procedure is straightforward and will not 
be repeated here (see Chang, 1984; Colella, 1974). 

Fig. 4 shows the calculated integrated intensity 
ratios (over AO and A~p) of the three-beam {113/11i} 
and {1 li/113} for Cu Ka~ and Cu K/3 for 0 < q~ < 
180 °. The angular ranges in AO and A¢ for integration 
are 120 arc s. Agreement between the calculated (Fig. 
4) and the experimental I~  (Figs. 2 and 3) is obtained. 

( b ) Quantitative phase determination 

According to Chang & Tang (1988), the relative 
intensity distribution Ib(A~0) of a three-beam 
(0, G, L) diffraction can be written as 

I'~(Aq~) = [I3(A~o) - I2(A~o)]l[I2(Aq~)] 

= ID(A~o)+ Ir(Aq~), (16) 

where I~(A~o), a function of A~o, is a convolution of 
the intrinsic diffraction profile, the crystal mosaic 
distribution and the instrumental broadening func- 
tion. The dynamical intensity Io and the kinematical 
intensity IK are 

where 

Io = 2Pa~ Q[2(A~p) cos 83 - r/r sin 63] (17) 

Ir = a2p2r/T/ r/,, (18) 

P = IrlkL (IFo-,IIFLI/IFoI) (19) 

Q= 11[(Z,)z+(r/r12)2] '/2 (20) 

L F = k / W  (21) 

W = kl sin Oc sin/3 cos OB. (22) 

L is the Lorentz factor for three-beam diffraction, r/~ 
and r/r are the intrinsic diffraction peak width and 
the total experimental peak width at half maximum, 
respectively: 

rli = k2 X~)]/ W (23) 

r/r = r/i + r/B + riM, (24) 

where r/~ and r/m are the average beam broadening 
and the mosaic spread, a~ and a2 are the polarization 
factors defined in the article of Chang & Tang (1988). 
The parameter P which is different from that given 
previously is redefined in (19) for convenience. 

The relative intensity distributions I~(a~o) are the 
experimentally obtained diffraction profiles shown in 
Figs. 2 and 3. For centrosymmetric crystals, 8 3 ~"  0 or 
180 °. Referring to (17), Io = 0 at the exact three-beam 
diffraction position A~o =0, namely ~0 =-~% (pro- 
vided that the error in a~o is so small that it can be 
neglected). The corresponding kinematical intensity 
is equal to the measured peak intensity I~(A~o)= 0. 
According to (18), IK is a Lorentzian. With the 
IK(A~0 = 0)= Ib(a~o = 0) as the peak value and the 
experimental peak width r/r as the full width at half 

Table 1. Experimentally determined phases 83 [ 83( th . )"  
theoretical value] 

(a) {11i/113} Cu Kal [83(th.)= 184 °] 
a(°) 83 (max.) 83 (min.) 

0 193 183 
10 195 183 
20 204 183 

(b) 111i/113} Cu Kfl [S3(th.) = 184 °] 
a (0) 63 (max.) 63 (min.) 

0 194 183 
I0 197 183 
20 195 184 

(c) {331/ i i l}  Cu Kfl [63( th . )=4 °] 
a (0) 63 (max.) 63 (min.) 

0 3 -10 
10 5 -11 
20 8 -11 

(d) {331/113} Cu Kfl [63(th.) = 184 °] 
a (°) 63 (max.) 63 (min.) 

0 194 183 
10 200 184 
20 206 183 

maximum, a Lorentzian can be constructed for the 
IK (A~p). Consequently, the dynamical intensity distri- 
bution Io(A~p) is readily defined as 

Io(A~) = I'~( A~o)- I'~( A~ =0) 

x{(m.12)l[(A~)2+(r/TI2)2]' /2}.  (2S) 
Alternatively, taking the experimental facts into 
account, I r  may be a Gaussian. The Io(A~p) then 
takes the form 

Io(A~) = Ib(A~o)- Ib(A~0 =0) 

x exp {-[a~p/1.201 (r/r/2)]2}. (26) 

The triplet phase 63 can then be determined according 
to Chang & Tang (1988) via 

COS 83 - s i n  83 --" I+/(2PalQW)la,=nr/2 (27a) 

-cos 83-sin 83= I_/(2PatQW)la,=-n~/2, (27b) 

where 
I+= Io(A~p= +r/r/2 ). (28) 

Calculation of 63 is carried out for each three-beam 
diffraction profile. There are 24 profiles for each three- 
beam family. The maximum and minimum calculated 
values of 83 for each three-beam family are listed in 
Table 1 for {113/11i} Cu K aj ,  {113/11i} Cu K/3, 
{133/1ii} Cu Kfl and {i33/311} Cu Kfl. The experi- 
mentally determined 63's using the Gaussian distribu- 
tion, (26), for Io(A~o) agree with the theoretical 83 
within 25 ° . 

4. Discussion and concluding remarks 

In this study, the effects of the crystal boundary on 
the X-ray diffraction rely mainly on the crystal- 
surface inclination. It is well known that the two-beam 
diffraction intensity is inversely proportional to [bl '/2 



44 EFFECTS OF CRYSTAL-SURFACE INCLINATION 

for strong reflection, where b = 3'o/YG. The inclina- 
tion of the crystal used is checked by plotting the 
intensity of 333 versus ~ ofCu K/3. It gave well defined 
sinusoidal curves as expected. The error in the crystal 
cutting for the inclined surfaces was about +1 °. 

For the inclined three-beam diffractions, the 
intensity variation due to the surface inclination is 
very large as can be seen in Figs. 2 and 3. The behavior 
of this variation was analyzed with the calculation 
procedure described in § 3. On the basis of geometric 
arguments, mirror symmetry is expected around 0 
and 180 ° . In fact, by inspecting these figures, we 
readily detect some correlation between the reflec- 
tions appearing in the interval 0-180 ° and those in 
180-360 °. For example, the I~  peak intensity of the 
three-beam L ' / G ' - L '  diffraction at ¢ +  180 ° is the 
same as that of the three-beam L / G - L  diffraction 
at ¢, where the secondary reflection L' of the former 
is the coupling G - L reflection of the latter, and vice 
versa, i.e. 

L /  G -  L-> G -  L ( - L ' ) /  L ( = G ' -  L'). 

Referring to the theorem of reciprocity (see Pinsker, 
1978; Chang, 1984), these two three-beam cases are 
equivalent. Consequently, the I~  is the same for both 
three-beam cases. This explains why the two diffrac- 
tions, being 180 ° apart in ~, have the same I~  values. 

As to the phase determination, it is evident that 
the sign of cos 83 associated with each three-beam 
diffraction investigated is clearly related to the asym- 
metry of the intensity profile obtained. This is con- 
sistent with the sign relation (Chang, 1981, 1982) 

S(cos 83)= St~St (29) 

where SL is the sign of the profile asymmetry. St is 
positive if the left wing of the profile is higher than 
the right wing. St is negative for the reversed profile 
asymmetry. For the quantitative phase analysis, both 
Gaussian and Lorentzian distributions were adopted 
for IK(A¢) .  Only the results from the Gaussian are 
listed in Table 1. It turned out that the Gaussian of 
(26) gave a better agreement between the experi- 
mentally determined 33 and the theoretical values. 
However, the difference in 33 between the Gaussian 
and the Lorentzian is less than 5 °. 

In conclusion, we have investigated the effect of 
the crystal-surface inclination on three-beam diffrac- 
tion. The intensity variation caused by this inclination 
is understood to be governed by the resonance failures 
2~:'s, namely, the excitation of the dispersion surface. 
The integrated intensity depends not only on the 
asymmetry parameter b = To/YG but also on yr. There 
seems no simple expression to describe the relation 
between the intensity and surface inclination. The 
overall effects of crystal inclination on diffraction 
intensity in the multibeam regime may have to be 
explained via dynamical calculation. On the other 
hand, the accuracy of the quantitative phase determi- 

nation is not affected by the crystal-surface inclina- 
tion, provided that the peak intensity I ' c (A¢  = O) at 
A¢ = 0 is treated as the maximum intensity for the 
kinematical intensity distribution IK (A~p). For 
irregularly shaped crystals, the boundary conditions 
as well as the dynamical excitations of the dispersion 
surface are far more complicated than the surface- 
inclined crystals. To determine IK(Aq~) is the key to 
a reliable quantitative phase determination. 
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